Development of a high-throughput, quantitative platform using human cerebral organoids to study virus-induced neuroinflammation in Alzheimer’s disease

Author:

Olson Meagan N.,Dawes Pepper,Murray Liam F.,Barton Nathaniel J.,Sundstrom Jonathan,Orszulak Adrian R.,Chigas Samantha M.,Tran Khanh,Aylward Aimee J.,Caliandro Michele F.,Riechers Sean-Patrick H.,Afshari Khashayar,Wang Qi,Garber Manuel,Humphries Fiachra,Orzalli Megan H.,Golenbock Douglas T.,Heneka Michael T.,Oh Hyung Suk,Church George M.,Young-Pearse Tracy L.,Knipe David M.,Readhead Benjamin,Chan Yingleong,Lim Elaine T.

Abstract

ABSTRACTNeuroinflammation is a central process in the pathogenesis of several neurodegenerative diseases such as Alzheimer’s disease (AD), and there are active efforts to target pathways involved in neuroinflammation for molecular biomarker discovery and therapeutic development in neurodegenerative diseases. It was also proposed that there may be an infectious etiology in AD that is associated with viruses such as herpes simplex virus (HSV-1) and influenza A virus (IAV), leading to neuroinflammation-induced AD pathogenesis or disease progression. We sought to develop high-throughput, quantitative molecular biomarker assays using dissociated cells from human cerebral organoids (dcOrgs), that can used for screening compounds to reverse AD-associated neuroinflammation. We found that HSV-1 infection, but not IAV infection, in dcOrgs led to increased intracellular Aβ42 and phosphorylated Tau-Thr212 (pTau-212) expression, lower ratios of secreted Aβ42/40, as well as neuronal loss, and increased proportions of astrocytes and microglia, which are hallmarks of AD. Among the glia cell-type markers, Iba1 (microglia) and GFAP (astrocyte) expression were most strongly correlated with HSV-1 expression, which further supported that these biomarkers are perturbed by glia-mediated neuroinflammation. By performing large-scale RNA sequencing, we observed that differentially expressed transcripts in HSV-1 infected dcOrgs were specifically enriched for AD-associated GWAS genes, but not for genes associated with other common neurodegenerative, neuropsychiatric or autoimmune diseases. Immediate treatment of HSV-1 infected dcOrgs with anti-herpetic drug acyclovir (ACV) rescued most of the cellular and transcriptomic biomarkers in a dosage-dependent manner, indicating that it is possible to use our high-throughput platform to identify compounds or target genes that can reverse these neuroinflammation-induced biomarkers associated with AD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3