Transcript-specific enrichment enables profiling rare cell states via scRNA-seq

Author:

Abay TsionORCID,Stickels Robert R.ORCID,Takizawa Meril T.,Nalbant Benan N.,Hsieh Yu-Hsin,Hwang Sidney,Snopkowski Catherine,Yu Kenny Kwok Hei,Abou-Mrad Zaki,Tabar Viviane,Ludwig Leif S.,Chaligné RonanORCID,Satpathy Ansuman T.ORCID,Lareau Caleb A.ORCID

Abstract

AbstractSingle-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing (scRNA-seq) identifies many rare populations of interest that express specific marker transcript combinations, traditional flow sorting limits our ability to enrich these populations for further profiling, including requiring cell surface markers with high-fidelity antibodies. Additionally, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers. To address these limitations, we describe Programmable Enrichment via RNA Flow-FISH by sequencing (PERFF-seq), a scalable assay that enables scRNA-seq profiling of subpopulations from complex cellular mixtures defined by the presence or absence of specific RNA transcripts. Across immune populations (n= 141,227 cells) and fresh-frozen and formalin-fixed paraffin-embedded brain tissue (n= 29,522 nuclei), we demonstrate the sorting logic that can be used to enrich for cell populations via RNA-based cytometry followed by high-throughput scRNA-seq. Our approach provides a rational, programmable method for studying rare populations identified by one or more marker transcripts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3