Challenges and Efficacy of Astrocyte-to-Neuron Reprogramming in Spinal Cord Injury: In Vitro Insights and In Vivo Outcomes

Author:

Niceforo AlessiaORCID,Zholudeva Lyandysha V.ORCID,Fernandes Silvia,Lane Michael A.,Qiang LiangORCID

Abstract

AbstractTraumatic spinal cord injury (SCI) leads to the disruption of neural pathways, causing loss of neural cells, with subsequent reactive gliosis and tissue scarring that limit endogenous repair. One potential therapeutic strategy to address this is to target reactive scar-forming astrocytes with direct cellular reprogramming to convert them into neurons, by overexpression of neurogenic transcription factors. Here we used lentiviral constructs to overexpressAscl1or a combination of microRNAs (miRs)miR124, miR9/9*andNeuroD1transfected into cultured andin vivoastrocytes. In vitroexperiments revealed cortically-derived astrocytes display a higher efficiency (70%) of reprogramming to neurons than spinal cord-derived astrocytes. In a rat cervical SCI model, the same strategy induced only limited reprogramming of astrocytes. Delivery of reprogramming factors did not significantly affect patterns of breathing under baseline and hypoxic conditions, but significant differences in average diaphragm amplitude were seen in the reprogrammed groups during eupneic breathing, hypoxic, and hypercapnic challenges. These results show that while cellular reprogramming can be readily achieved in carefully controlledin vitroconditions, achieving a similar degree of successful reprogrammingin vivois challenging and may require additional steps.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3