Foraging Under Uncertainty Follows the Marginal Value Theorem with Bayesian Updating of Environment Representations

Author:

Webb JamesORCID,Steffan Paul,Hayden Benjamin Y.ORCID,Lee DaeyeolORCID,Kemere CalebORCID,McGinley MatthewORCID

Abstract

AbstractForaging theory has been a remarkably successful approach to understanding the behavior of animals in many contexts. In patch-based foraging contexts, the marginal value theorem (MVT) shows that the optimal strategy is to leave a patch when the marginal rate of return declines to the average for the environment. However, the MVT is only valid in deterministic environments whose statistics are known to the forager; naturalistic environments seldom meet these strict requirements. As a result, the strategies used by foragers in naturalistic environments must be empirically investigated. We developed a novel behavioral task and a corresponding computational framework for studying patch-leaving decisions in head-fixed and freely moving mice. We varied between-patch travel time, as well as within-patch reward depletion rate, both deterministically and stochastically. We found that mice adopt patch residence times in a manner consistent with the MVT and not explainable by simple ethologically motivated heuristic strategies. Critically, behavior was best accounted for by a modified form of the MVT wherein environment representations were updated based on local variations in reward timing, captured by a Bayesian estimator and dynamic prior. Thus, we show that mice can strategically attend to, learn from, and exploit task structure on multiple timescales simultaneously, thereby efficiently foraging in volatile environments. The results provide a foundation for applying the systems neuroscience toolkit in freely moving and head-fixed mice to understand the neural basis of foraging under uncertainty.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3