Deep Conformal Supervision: a comparative study

Author:

Vahdani Amir M.ORCID,Faghani ShahriarORCID

Abstract

AbstractBackgroundTrustability is crucial for Al models in clinical settings. Conformal prediction as a robust uncertainty quantification framework has been receiving increasing attention as a valuable tool in improving model trustability. An area of active research is the method of non-conformity score calculation for conformal prediction.MethodWe propose deep conformal supervision (DCS) which leverages the intermediate outputs of deep supervision for non-conformity score calculation, via weighted averaging based on the inverse of mean calibration error for each stage. We benchmarked our method on two publicly available datasets focused on medical image classification; a pneumonia chest radiography dataset and a preprocessed version of the 2019 RSNA Intracranial Hemorrhage dataset.ResultsOur method achieved mean coverage errors of 16e-4 (CI: le-4, 41e-4) and 5e-4 (CI: le-4, 10e-4) compared to baseline mean coverage errors of 28e-4 (CI: 2e-4, 64e-4) and 21e-4 (CI: 8e-4, 3e-4) on the two datasets, respectively.ConclusionIn this non-inferiority study, we observed that the baseline results of conformal prediction already exhibit small coverage errors. Our method shows a relative enhancement, particularly noticeable in scenarios involving smaller datasets or when considering smaller acceptable error levels, although this improvement is not statistically significant.

Publisher

Cold Spring Harbor Laboratory

Reference22 articles.

1. Uncover This Tech Term: Uncertainty Quantification for Deep Learning

2. Gammerman A , Vovk V , Vapnik VN . Learning by Transduction. ArXiv 1998; abs/1301.7375. Available from: URL: https://api.semanticscholar.org/CorpuslD:2374498.

3. Conformal Prediction in Clinical Medical Sciences

4. Mehrtens H , Bucher T , Brinker TJ . Pitfalls of Conformal Predictions for Medical Image Classification. In: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. Cham: Springer Nature Switzerland; 2023. p. 198–207.

5. Lee C-Y , Xie S , Gallagher PW , Zhang Z , Tu Z. Deeply-Supervised Nets. ArXiv 2014; abs/1409.5185. Available from: URL: https://api.semanticscholar.org/CorpuslD:1289873.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3