Flame retardant tetrabromobisphenol A (TBBPA) disrupts histone acetylation during zebrafish maternal-to-zygotic transition

Author:

Serradimigni Rosemaria,Rojas Alfredo,Leong Connor,Pal Uttam,Bryan Madeline,Sharma Sunil,Dasgupta SubhamORCID

Abstract

ABSTRACT3,3’,5.5’-Tetrabromobisphenol A (TBBPA) is a widely used brominated flame-retardant utilized in the production of electronic devices and plastic paints. The objective of this study is to use zebrafish as a model and determine the effects of TBBPA exposure on early embryogenesis. We initiated TBBPA exposures (0, 10, 20 and 40μM) at 0.75 h post fertilization (hpf) and monitored early developmental events such as cleavage, blastula and epiboly that encompass maternal-to-zygotic transition (MZT) and zygotic genome activation (ZGA). Our data revealed that TBBPA exposures induced onset of developmental delays by 3 hpf (blastula). By 5.5 hpf (epiboly), TBBPA-exposed (10-20 μM) embryos showed concentration-dependent developmental lag by up to 3 stages or 100% mortality at 40 μM. Embryos exposed to sublethal TBBPA concentrations from 0.75-6 hpf and raised in clean water to 120 hpf showed altered larval photomotor response (LPR), suggesting a compromised developmental health. To examine the genetic basis of TBBPA-induced delays, we conducted mRNA-sequencing on embryos exposed to 0 or 40 μM TBBPA from 0.75 hpf to 2, 3.5 or 4.5 hpf. Read count data showed that while TBBPA exposures had no overall impacts on maternal or maternal-zygotic genes, collective read counts for zygotically activated genes were lower in TBBPA treatment at 4.5 hpf compared to time-matched controls, suggesting that TBBPA delays ZGA. Gene ontology assessments for both time- and stage-matched differentially expressed genes revealed TBBPA-induced inhibition of chromatin assembly- a process regulated by histone modifications. Since acetylation is the primary histone modification system operant during early ZGA, we immunostained embryos with an H3K27Ac antibody and demonstrated reduced acetylation in TBBPA-exposed embryos. Leveraging in silico molecular docking studies and in vitro assays, we also showed that TBBPA potentially binds to P300- a protein that catalyzes acetylation- and inhibits P300 activity. Finally, we co-exposed embryos to 20 μM TBBPA and 50 μM n-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide (CTPB) -a histone acetyltransferase activator that promotes histone acetylation- and showed that TBBPA-CTPB co or pre-exposures significantly reversed TBBPA-only developmental delays, suggesting that TBBPA-induced phenotypes are indeed driven by repression of histone acetylation. Collectively, our work demonstrates that TBBPA disrupts ZGA and early developmental morphology, potentially by inhibiting histone acetylation. Future studies will focus on mechanisms of TBBPA-induced chromatin modifications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3