Neural networks built from enzymatic reactions can operate as linear and nonlinear classifiers

Author:

Samaniego Christian Cuba,Wallace Emily,Blanchini Franco,Franco Elisa,Giordano Giulia

Abstract

AbstractThe engineering of molecular programs capable of processing patterns of multi-input biomarkers holds great potential in applications ranging from in vitro diagnostics (e.g., viral detection, including COVID-19) to therapeutic interventions (e.g., discriminating cancer cells from normal cells). For this reason, mechanisms to design molecular networks for pattern recognition are highly sought after. In this work, we explore how enzymatic networks can be used for both linear and nonlinear classification tasks. By leveraging steady-state analysis and showing global stability, we demonstrate that these networks can function as molecular perceptrons, fundamental units of artificial neural networks—capable of processing multiple inputs associated with positive and negative weights to achieve linear classification. Furthermore, by composing orthogonal enzymatic reactions, we show that multi-layer networks can be constructed to achieve nonlinear classification.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3