Natural variation in the sequestosome-related gene, sqst-5, underlies zinc homeostasis in Caenorhabditis elegans

Author:

Evans Kathryn S.ORCID,Zdraljevic Stefan,Stevens LewisORCID,Collins Kimberly,Tanny Robyn E.ORCID,Andersen Erik C.ORCID

Abstract

AbstractZinc is an essential trace element that acts as a co-factor for many enzymes and transcription factors required for cellular growth and development. Altering intracellular zinc levels can produce dramatic effects ranging from cell proliferation to cell death. To avoid such fates, cells have evolved mechanisms to handle both an excess and a deficiency of zinc. Zinc homeostasis is largely maintained via zinc transporters, permeable channels, and other zinc-binding proteins. Variation in these proteins might affect their ability to interact with zinc, leading to either increased sensitivity or resistance to natural zinc fluctuations in the environment. We can leverage the power of the roundworm nematode Caenorhabditis elegans as a tractable metazoan model for quantitative genetics to identify genes that could underlie variation in responses to zinc. We found that the laboratory-adapted strain (N2) is resistant and a natural isolate from Hawaii (CB4856) is sensitive to micromolar amounts of exogenous zinc supplementation. Using a panel of recombinant inbred lines, we identified two large-effect quantitative trait loci (QTL) on the left arm of chromosome III and the center of chromosome V that are associated with zinc responses. We validated and refined both QTL using near-isogenic lines (NILs) and identified a naturally occurring deletion in sqst-5, a sequestosome-related gene, that is associated with resistance to high exogenous zinc. We found that this deletion is relatively common across strains within the species and that variation in sqst-5 is associated with zinc resistance. Our results offer a possible mechanism for how organisms can respond to naturally high levels of zinc in the environment and how zinc homeostasis varies among individuals.Author summaryZinc, although an essential metal, can be toxic if organisms are exposed to concentrations that are too high or too low. To prevent toxicity, organisms have evolved mechanisms to regulate zinc uptake from the environment. Here, we leveraged genetic variation between two strains of the roundworm Caenorhabditis elegans with different responses to high exogenous zinc to identify genes that might be involved in maintaining proper zinc levels. We identified four loci that contributed to differential zinc responses. One of these loci was the sequestosome-related gene sqst-5. We discovered that targeted deletions of sqst-5 caused an increase in resistance to zinc. Although SQST-5 contains a conserved zinc-binding protein domain, it has yet to be directly implicated in the C. elegans zinc response pathway. We identified two common forms of genetic variation in sqst-5 among 328 distinct strains, suggesting that variation in sqst-5 must have emerged multiple times, perhaps in response to an environment of high zinc. Overall, our study suggests a natural context for the evolution of zinc response mechanisms.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3