Visualization of Collagen–Mineral Arrangement using Atom Probe Tomography

Author:

Lee Bryan E.J.,Langelier Brian,Grandfield KathrynORCID

Abstract

AbstractBone is a complex, hierarchical structure comprised of two distinct phases: the organic, collagen– rich phase and the inorganic mineral–rich phase. This collagen–mineral arrangement has implications for bone function, aging, and disease. However, strategies to extract a single mineralized collagen fibril to investigate the interplay between components with sufficient resolution have been mostly confined to in vitro systems that only approximate the biological environment or transmission electron microscopy studies with lower spatial and chemical resolution. Therefore, there is extensive debate over the location of mineral with respect to collagen in in vivo mineralized tissues as visualization and quantification of the mineral in a living system is difficult or impossible. Herein, we have developed an approach to artificially extract a single mineralized collagen fibril from bone to analyze its composition and structure atom-by-atom with 3D resolution and sub-nanometer accuracy using atom probe tomography. This enables, for the first time, a method to probe fibril-level mineralization and collagen–mineral arrangement from an in vivo system with both the spatial and chemical precision required to comment on collagen– mineral arrangement. Using atom probe tomography, 4D (spatial + chemical) reconstructed volumes of leporine bone were generated with accuracy from correlative scanning electron microscopy. Distinct, winding collagen fibrils were identified with mineralized deposits both encapsulating and incorporated into the collagenous structures. This work demonstrates a novel fibril-level detection method that can be used to probe structural and chemical changes of bone and contribute new insights to the debate on collagen–mineral arrangement in mineralized tissues such as bones, and teeth.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3