Understanding site choice and competition through the adaptive dynamics of microbial settling strategy in a chemostat

Author:

Cai Yuhua,Geritz Stefan A. H.

Abstract

AbstractTo understand the choice and competition of sites in nature, we consider an ecological environment in a chemostat consisting of a polymorphic microbial population that can float in the fluid or settle down on the wall of the chemostat. For the transition of a microbe from its floating state to its settled state at a particular settling rate involving the choice and competition of sites on the wall, we consider three different mechanisms: (i) unimolecular-Bourgeois settling, i.e., floaters land freely on the wall, but in an occupied site, the owner keeps the site (Bourgeois behaviour); (ii) unimolecular-anti-Bourgeois settling, i.e., floaters land freely on the wall, but in an occupied site, the intruder gets the site (anti-Bourgeois behaviour); (iii) bimolecular settling, i.e., floaters land only on the vacant sites of the wall. Employing the framework of adaptive dynamics, we study the evolution of the settling rate with different settling mechanisms and investigate how physical operating conditions affect the evolutionary dynamics. Our results indicate that settling mechanisms and physical operating conditions have significant influences on the direction of evolution and the diversity of phenotypes. (1) For constant nutrient input, theoretical analysis shows that the population is always monomorphic during the long-term evolution. Notably, the direction of evolution depends on the settling mechanisms and physical operating conditions, which further determines the composition of the population. Moreover, we find two exciting transformations of types of Pairwise Invasibility Plots, which are the gradual transformation and the bang-bang transformation. (2) For periodic nutrient input, numerical analysis reveals that evolutionary coexistence is possible, and the population eventually maintains dimorphism. Remarkably, for all three settling mechanisms, the long-term evolution leads to one of the two coexisting species settle down totally on the wall if the input is low-frequency but float entirely in the fluid if the input becomes high-frequency.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3