The Drosophila EGFR ligand mSpitz is delivered to cytoplasmic capes at sites of non-canonical RNA export on the nuclear envelope via the endosomal system

Author:

Mattie Floyd J.,Kumar Praveen,Travor Mark D.,Browder Kristen C.,Thomas Claire M.

Abstract

AbstractNuclear-cytoplasmic communication is not limited to nuclear pores, with both proteins and RNA using alternative routes between these compartments. We previously characterized cytoplasmic capes (large invaginations of the nuclear envelope in Drosophila), which are enriched for the membrane-bound EGF receptor ligand mSpitz, endosome-related organelles and ubiquitylated proteins. Closely associated with capes are groups of perinuclear vesicles resembling those seen at sites of RNP export via a budding mechanism. Here, we demonstrate that mSpitz delivery to capes requires passage through the endosomal system. We also show that capes are closely associated with sites of non-canonical RNP export as well as the dFrizzled2 receptor C terminal fragment, a core component of this export pathway. Video microscopy of glands in intact larvae indicates that cytoplasmic capes are stable structures that persist for at least 90 minutes without conspicuous growth. We further show that capes appear with the growth of the salivary gland rather than its developmental stage. Finally, we show that the large F-actin binding protein βH-spectrin, which modulates endosomal trafficking, as well as its partner α-spectrin are required for cape formation. Cytoplasmic capes therefore represent a subspecialization of the nuclear envelope where endosomal trafficking and RNP export are closely associated.SynopsisWe further characterize large invaginations of the nuclear envelope called cytoplasmic capes in Drosophila. The EGF receptor ligand mSpitz is concentrated in capes and we show that it traffics to this compartment via endosomes. The presence of RNP and the dFrizzled2 receptor C-terminal fragment also indicates that non-canonical RNA export is concentrated at capes. In vivo imaging shows that capes persist for at least 90 minutes. Finally, the large F-actin crosslinker α/β-spectrin is shown to be required for cape formation.Abstract Figure

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3