Microscopic Chromosomal Structural and Dynamical Origin of Cell Differentiation and Reprogramming

Author:

Chu XiakunORCID,Wang JinORCID

Abstract

AbstractAs an essential and fundamental process of life, cell development involves large-scale reorganization of the three-dimensional genome architecture, which forms the basis of gene regulation. Here, we develop a landscape-switching model to explore the microscopic chromosomal structural origin of the embryonic stem cell (ESC) differentiation and the somatic cell reprogramming. We show that chromosome structure exhibits significant compartment-switching in the unit of topologically associating domain. We find that the chromosome during differentiation undergoes monotonic compaction with spatial re-positioning of active and inactive chromosomal loci towards the chromosome surface and interior, respectively. In contrast, an over-expanded chromosome, which exhibits universal localization of loci at the chromosomal surface with erasing the structural characteristics formed in the somatic cells, is observed during reprogramming. We suggest an early distinct differentiation pathway from the ESC to the terminally differentiated cell, giving rise to early bifurcation on the Waddington landscape for the ESC differentiation. Our theoretical model including the non-equilibrium effects, draws a picture of the highly irreversible cell differentiation and reprogramming processes, in line with the experiments. The predictions from our model provide a physical understanding of cell differentiation and reprogramming from the chromosomal structural and dynamical perspective and can be tested by future experiments.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genomic Instability in Stem Cells: The Basic Issues;Stem cells: From Potential to Promise;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3