Integrated metabolome and transcriptome analyses provide insight into colon cancer development by the gut microbiota

Author:

Busi Susheel Bhanu,Lei Zhentian,Sumner Lloyd W.,Amos-Landgraf JamesORCID

Abstract

AbstractColon cancer onset and progression is strongly associated with the presence, absence, or differences in relative abundances of certain microbial taxa in the gastrointestinal tract. However, specific mechanisms affecting disease susceptibility related to complex commensal bacterial mixtures are poorly understood. We used a multi-omics approach to determine how differences in the complex gut microbiome (GM) influence the metabolome and host transcriptome and ultimately affect susceptibility to adenoma development in a preclinical rat model of colon cancer. Fecal samples from rats harboring distinct complex GMs were analyzed using ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS). We collected samples prior to observable disease onset and identified putative metabolite profiles that predicted future disease severity, independent of GM status. Transcriptome analyses performed after disease onset from normal epithelium and tumor tissues between the high and low tumor GMs suggests that the GM is correlated with altered host gene expression. Integrated pathway (IP) analyses of the metabolome and transcriptome based on putatively identified metabolic features indicate that bile acid biosynthesis was enriched in rats with high tumors (GM:F344) along with increased fatty acid metabolism and mucin biosynthesis. These data emphasize the utility of using untargeted metabolomics to reveal signatures of susceptibility and resistance and integrated analyses to reveal common pathways that are likely to be universal targets for intervention.Statement of significanceFecal metabolites, influenced by the gut microbiota, correlate with colon adenoma risk in a preclinical model of familial colon cancer.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3