Midcell localization of PBP4 of Escherichia coli modulates the timing of divisome assembly

Author:

Verheul Jolanda,Lodge Adam,Yau Hamish C.L.,Liu Xiaolong,Liu Xinwei,Solovyova Alexandra S.,Typas Athanasios,Banzhaf Manuel,Vollmer Waldemar,Blaauwen Tanneke denORCID

Abstract

ABSTRACTInsertion of new material into the Escherichia coli peptidoglycan (PG) sacculus between the cytoplasmic membrane and the outer membrane requires a well-organized balance between synthetic and hydrolytic activities to maintain cell shape and avoid lysis. The hydrolytic enzymes outnumber the enzymes that insert new PG by far and very little is known about their specific function. Here we show that the DD-carboxy/endopeptidase PBP4 localizes in a PBP1A/LpoA and FtsEX dependent fashion at midcell during septal PG synthesis. Midcell localization of PBP4 requires its non-catalytic domain 3 of unknown function, but not the activity of PBP4 or FtsE. Microscale thermophoresis with isolated proteins shows that domain 3 is needed for the interaction with NlpI, but not PBP1A or LpoA. In vivo crosslinking experiments confirm the interaction of PBP4 with PBP1A and LpoA. We propose that PBP4 functions together with the amidases AmiA and B to create denuded glycan strands to attract the initiator of septal PG synthesis, FtsN. Consistent with this model, we found that the divisome assembly at midcell was significantly affected in cells lacking PBP4.IMPORTANCEPeptidoglycan biosynthesis is a major target for antibacterials. The covalently closed peptidoglycan mesh, called sacculus, protects the bacterium from lysis due to its turgor. Sacculus growth is facilitated by the balanced activities of synthases and hydrolases, and disturbing this balance leads to cell lysis and bacterial death. Because of the large number and possible redundant functions of peptidoglycan hydrolases, it has been difficult to decipher their individual functions. In this paper we show that the DD-endopeptidase PBP4 localizes at midcell during septal peptidoglycan synthesis in Escherichia coli and is important for the timing of the assembly of the division machinery. This shows that inhibition of certain hydrolases could weaken the cells and might enhance antibiotic action.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3