Geographic drivers of diversification in loliginid squids with an emphasis on the western Atlantic species

Author:

Genty GabrielleORCID,Pardo-De la Hoz Carlos J,Montoya Paola,Ritschard Elena A.

Abstract

ABSTRACTAimIdentifying the mechanisms driving divergence in marine organisms is challenging as opportunities for allopatric isolation are less conspicuous than in terrestrial ecosystems. Here, we aim to estimate a dated phylogeny of the squid family Loliginidae, and perform ecological niche analyses to explore biogeographic and evolutionary patterns giving rise to extant lineages in this group, with particular focus on cryptic species with population structure along the western Atlantic coast.LocationWorld-wide.TaxonClass Cephalopoda, Family LoliginidaeMethodsWe used three loci to infer gene trees and perform species delimitation analysis to detect putative cryptic speciation events. We then estimated a dated species tree under the Bayesian multispecies coalescent and used it to reconstruct ancestral distributions based on the currently known ranges of the species. Also, we tested the hypothesis of niche divergence in three recently diverged species subpopulations of the northwestern and southwestern Atlantic Ocean by ecological niche modeling and niche overlap measurement from occurrence data.ResultsThe phylogenetic analyses confirmed the monophyly for the current twenty-six species of the Loliginidae family. Our ancestral area reconstruction and divergence estimation revealed the origin and geographical dispersal of loliginid lineages. Additionally, the phylogenetic analysis and the species delimitation analysis supported geographic structure within D. pleii, D. pealeii and L. brevis. The ecological niche models revealed unsuitable habitat in the immediately adjacent area of the Amazonian Orinoco Plume, yet suitable habitat characteristics beyond this area.Main conclusionsOur study allowed us to confirm the monophyly of all currently recognized species within the Loliginidae family and we corroborate the biogeographical origin being the Indo-Pacific region in the Cretaceous. We found a possible new cryptic lineage and show evidence of the Amazon-Orinoco Plume as an ecological barrier, which influenced the diversification of this particular group of marine organisms.

Publisher

Cold Spring Harbor Laboratory

Reference90 articles.

1. Amante, C. , & Eakins, B. W. (2009). ETOPO1 arc-minute global relief model: Procedures, data sources and analysis.

2. What an introduced species can tell us about the spatial extension of benthic populations;Marine Ecology Progress Series,2001

3. Barrett, L. (2017). Habitat preferences and fitness consequences for fauna associated with novel marine environments.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3