Statistical methods for large ensemble of super-resolution stochastic single particle trajectories

Author:

Hoze N.,Holcman D.

Abstract

AbstractFollowing recent progresses in super-resolution microscopy obtained in the last decade, massive amount of redundant single stochastic trajectories are now available for statistical analysis. Flows of trajectories of molecules or proteins are sampling the cell membrane or its interior at a very high time and space resolution. Several statistical analysis were developed to extract information contained in these data, such as the biophysical parameters of the underlying stochastic motion to reveal the cellular organization. These trajectories can further reveal hidden subcellular organization. We present here the statistical analysis of these trajectories based on the classical Langevin equation, which serves as a model of trajectories. Parametric and non-parametric estimators are constructed by discretizing the stochastic equations and they allow recovering tethering forces, diffusion tensor or membrane organization from measured trajectories, that differ from physical ones by a localization noise. Modeling, data analysis and automatic detection algorithms serve extracting novel biophysical features such as potential wells and other sub-structures, such as rings at an unprecedented spatiotem-poral resolution. It is also possible to reconstruct the surface membrane of a biological cell from the statistics of projected random trajectories.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3