OncoCTMiner: streamlining precision oncology trial matching via molecular profile analysis

Author:

Xu Quan,Liu Yueyue,Sun Dawei,Huang Xiaoqian,Li Feihong,Zhai JinCheng,Li Yang,Zhou Qiming,Niu Beifang

Abstract

AbstractSummaryOncoCTMiner is an innovative platform that streamlines precision oncology trial matching by integrating genetic profile analysis and clinical data. It utilizes manual tagging and automated entity recognition to identify six major biomedical concepts within clinical trial records. The platform currently contains a database of over 457,000 clinical trials, enabling quick and advanced search functionalities. Additionally, OncoCTMiner features an automated matching system based on genetic profiles and clinical data, providing real-time matching reports for suitable clinical trials. This platform aims to enhance patient enrollment in precision oncology trials, facilitating the development of personalized cancer therapies.Availability and ImplementationOncoCTMiner is available athttps://oncoctminer.chosenmedinfo.com.Contactniubf@cnic.cnorqimingzhou@chosenmedtech.comSupplementary informationSupplementary data are available atmedRxivonline.Graphic AbstractGraphic abstract:A) OncoCTMiner’s role in precision oncology trial enrollment. B) OncoCTMiner takes clinical and genetic profiles as inputs and utilizes a trial matching and filtering system to generate a report of matched trials. C) Strategy for building the clinical trial eligibility criteria database. D) Automatic matching strategy for genomics-driven oncology trials.

Publisher

Cold Spring Harbor Laboratory

Reference11 articles.

1. Implementin. Precision Medicine Programs and Clinical Trials in the Community-Based Oncology Practice: Barriers and Best Practices;Am Soc Clin Oncol Educ Book,2018

2. Learnings From Precision Clinical Trial Matching for Oncology Patients Who Received NGS Testing;JCO Clin Cancer Inform,2021

3. Klein, H. , et al. MatchMiner: An open source platform for cancer precision medicine. medRxiv 2022:2022.2002.2002.22270186.

4. DNorm: disease name normalization with pairwise learning to rank

5. Leaman, R. , Wei, C.H. and Lu, Z. tmChem: a high performance approach for chemical named entity recognition and normalization. J Cheminform 2015;7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3