Abstract
ABSTRACTPrevious studies have demonstrated that density is an important perceptual aspect of textural appearance to which the visual system is highly attuned. Furthermore, it is known that density cues not only influence texture segmentation, but can enable segmentation by themselves, in the absence of other cues. A popular computational model of texture segmentation known as the “Filter-Rectify-Filter” (FRF) model predicts that density should be a second-order cue enabling segmentation. For a compound texture boundary defined by superimposing two single-micropattern density boundaries, a version of the FRF model in which different micropattern-specific channels are analyzed separately by different second-stage filters makes the prediction that segmentation thresholds should be identical in two cases: (1) Compound boundaries with an equal number of micropatterns on each side but different relative proportions of each variety (compound feature boundaries) and (2) Compound boundaries with different numbers of micropatterns on each side, but with each side having an identical number of each variety (compound density boundaries). We directly tested this prediction by comparing segmentation thresholds for second-order compound feature and density boundaries, comprised of two superimposed single-micropattern density boundaries comprised of complementary micropattern pairs differing either in orientation or contrast polarity. In both cases, we observed lower segmentation thresholds for compound density boundaries than compound feature boundaries, with identical results when the compound density boundaries were equated for RMS contrast. In a second experiment, we considered how two varieties of micropatterns summate for compound boundary segmentation. In the case where two single micro-pattern density boundaries are superimposed to form a compound density boundary, we find that the two channels combine via probability summation. By contrast, when they are superimposed to form a compound feature boundary, segmentation performance is worse than for either channel alone. From these findings, we conclude that density segmentation may rely on neural mechanisms different from those which underlie feature segmentation, consistent with recent findings suggesting that density comprises a separate psychophysical ‘channel’.
Publisher
Cold Spring Harbor Laboratory