Recurrent neural networks that learn multi-step visual routines with reinforcement learning

Author:

Mollard Sami,Wacongne Catherine,Bohte Sander M.,Roelfsema Pieter R.

Abstract

AbstractMany cognitive problems can be decomposed into series of subproblems that are solved sequentially by the brain. When subproblems are solved, relevant intermediate results need to be stored by neurons and propagated to the next subproblem, until the overarching goal has been completed. We will here consider visual tasks, which can be decomposed into sequences of elemental visual operations. Experimental evidence suggests that intermediate results of the elemental operations are stored in working memory as an enhancement of neural activity in the visual cortex. The focus of enhanced activity is then available for subsequent operations to act upon. The main question at stake is how the elemental operations and their sequencing can emerge in neural networks that are trained with only rewards, in a reinforcement learning setting.We here propose a new recurrent neural network architecture that can learn composite visual tasks that require the application of successive elemental operations. Specifically, we selected three tasks for which electrophysiological recordings of monkeys’ visual cortex are available. To train the networks, we used RELEARNN, a biologically plausible four-factor Hebbian learning rule, which is local both in time and space. We report that networks learn elemental operations, such as contour grouping and visual search, and execute sequences of operations, solely based on the characteristics of the visual stimuli and the reward structure of a task.After training was completed, the activity of the units of the neural network resembled the activity of neurons in the visual cortex of monkeys solving the same tasks. Relevant information that needed to be exchanged between subroutines was maintained as a focus of enhanced activity and passed on to the subsequent subroutines. Our results demonstrate how a biologically plausible learning rule can train a recurrent neural network on multistep visual tasks.Author SummaryMany visual problems, like finding your way on a map, are easier to solve by being decomposed into a series of easier subproblems. To successfully decompose a problem into a sequence of easier subproblems, information must flow between them so that the solution of one subproblem can be used in the next ones. Experimental evidences indicate that, in the visual cortex of monkeys solving complex visual problems, outcomes of subproblems are made available as a focus of enhanced activity so that they can be used as inputs for the next subproblems. To understand how such strategies are learnt, we developed a recurrent artificial neural networks that we trained in a reinforcement learning context, with a biologically plausible learning rule, on the same tasks that were presented to monkeys. We found that the activation of units of the networks resembled the spatiotemporal patterns of activity observed in the visual cortex of monkeys. Our results shed light on how recurrent neural networks trained with a biologically plausible learning rule can learn to propagate enhanced activity to solve complex visual tasks.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3