Truncated protein isoforms generate diversity of protein localization and function in yeast

Author:

Higdon Andrea L.,Won Nathan H.,Brar Gloria A.

Abstract

ABSTRACTGenome-wide measurements of ribosome occupancy on mRNA transcripts have enabled global empirical identification of translated regions. These approaches have revealed an unexpected diversity of protein products, but high-confidence identification of new coding regions that entirely overlap annotated coding regions – including those that encode truncated protein isoforms – has remained challenging. Here, we develop a sensitive and robust algorithm focused on identifying N-terminally truncated proteins genome-wide, identifying 388 truncated protein isoforms, a more than 30-fold increase in the number known in budding yeast. We perform extensive experimental validation of these truncated proteins and define two general classes. The first set lack large portions of the annotated protein sequence and tend to be produced from a truncated transcript. We show two such cases, Yap5truncationand Pus1truncation, to have condition-specific regulation and functions that appear distinct from their respective annotated isoforms. The second set of N-terminally truncated proteins lack only a small region of the annotated protein and are less likely to be regulated by an alternative transcript isoform. Many localize to different subcellular compartments than their annotated counterpart, representing a common strategy for achieving dual localization of otherwise functionally identical proteins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3