Treatment with furosemide indirectly increases inhibitory transmission in the developing hippocampus

Author:

Peerboom C.,Wijne T.,Wierenga C.J.ORCID

Abstract

AbstractDuring the first two postnatal weeks intraneuronal chloride concentrations in rodents gradually decrease, causing a shift from depolarizing to hyperpolarizing γ-aminobutyric acid (GABA) responses. GABAergic depolarization in the immature brain is crucial for the formation and maturation of excitatory synapses, but when GABAergic signaling becomes inhibitory it no longer promotes synapse formation. Here we examined the role of chloride transporters in developing postnatal hippocampal neurons using furosemide, an inhibitor of the chloride importer NKCC1 and chloride exporter KCC2 with reported anticonvulsant effects. We treated organotypic hippocampal cultures made from 6 to 7-day old mice with 200 μM furosemide from DIV1 to DIV8. Using perforated patch clamp recordings we observed that the GABA reversal potential was depolarized after acute furosemide application, but after a week of furosemide treatment the GABA reversal potential but was more hyperpolarized compared to control. Expression levels of the chloride cotransporters were unaffected after one week furosemide treatment. This suggests that furosemide inhibited KCC2 acutely, while prolonged treatment resulted in (additional) inhibition of NKCC1, but we cannot exclude changes in HCO3-. We assessed the effects of accelerating the GABA shift by furosemide treatment on inhibitory synapses onto CA1 pyramidal cells. Directly after cessation of furosemide treatment at DIV9, inhibitory synapses were not affected. However at DIV21, two weeks after ending the treatment, we found that the frequency of inhibitory currents was increased, and VGAT puncta density instratum Radiatumwas increased. In addition, cell capacitance of CA1 pyramidal neurons was reduced in furosemide-treated slices at DIV21 in an activity-dependent manner. Our results suggest that furosemide treatment indirectly promoted inhibitory transmission, possibly by increasing activity-independent GABA release.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3