Raman micro-spectroscopy reveals the spatial distribution of fumarate in cells and tissues

Author:

Kamp Marlous,Surmacki JakubORCID,Mondejar Marc Segarra,Young Tim,Chrabaszcz Karolina,Joud Fadwa,Zecchini Vincent,Speed Alyson,Frezza ChristianORCID,Bohndiek Sarah EORCID

Abstract

AbstractAberrantly accumulated metabolites such as fumarate elicit intra– and inter-cellular pro-oncogenic cascades, yet current methods to measure them require sample perturbation or disruption and lack spatio-temporal resolution, limiting our ability to fully characterize their function and distribution in cells and within a tissue. Raman spectroscopy (RS) is a powerful bio-analytical tool that directly characterizes the chemical composition of a sample based solely on the optical fingerprint of vibrational modes. Here, we show for the first time that RS can directly detect fumarate in living cellsin vivoand animal tissuesex vivo. Using the observed linear relationship between Raman scattered intensity and fumarate concentration, we demonstrate that RS can distinguish between Fumarate hydratase (Fh1)-deficient and Fh1-proficient cells based on their fumarate concentration. Moreover, RS reveals the spatial compartmentalization of fumarate within cellular organelles: consistent with disruptive methods, in Fh1-deficient cells we observe the highest fumarate concentration (37 ± 19 mM) in the mitochondria, where the TCA cycle operates, followed by the cytoplasm (24 ± 13 mM) and then the nucleus (9 ± 6 mM). Finally, we apply RS to tissues from an inducible mouse model of FH loss in the kidney, demonstrating that RS can accurately classify FH status in these tissues. These results suggest that RS could be adopted as a valuable tool for small molecule metabolic imaging, enablingin situdynamic evaluation of fumarate compartmentalization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3