Author:
Lyu Ziqi,Genereux Joseph C.
Abstract
ABSTRACTProximity labeling is a powerful approach for characterizing subcellular proteomes. We recently demonstrated that proximity labeling can be used to identify mistrafficking of secretory proteins, such as occurs during pre-emptive quality control (pre-QC) following endoplasmic reticulum (ER) stress. This assay depends on protein quantification by immunoblotting and densitometry, which is only semi-quantitative and suffers from poor sensitivity. Here, we integrate parallel reaction monitoring mass spectrometry to enable a more quantitative platform for ER import. PRM as opposed to densitometry improves quantification of transthyretin mistargeting while also achieving at least a ten-fold gain in sensitivity. The multiplexing of PRM also enabled us to evaluate a series of normalization approaches, revealing that normalization to auto-labeled APEX2 peroxidase is necessary to account for drug treatment-dependent changes in labeling efficiency. We apply this approach to systematically characterize the relationship between chemical ER stressors and ER pre-QC induction in HEK293T cells. Using dual-FLAG-tagged transthyretin (FLAGTTR) as a model secretory protein, we find that Brefeldin A treatment as well as ER calcium depletion cause pre-QC, while tunicamycin and dithiothreitol do not, indicating ER stress alone is not sufficient. This finding contrasts with the canonical model of pre-QC induction, and establishes the utility of our platform.TOC graph
Publisher
Cold Spring Harbor Laboratory