Irregularity of instantaneous gamma frequency in the motor control network characterize visuomotor and proprioceptive information processing

Author:

Ryu JihyeORCID,Choi Jeong-woo,Niketeghad Soroush,Torres Elizabeth B.,Pouratian Nader

Abstract

AbstractBackgroundGoal-directed movements involve integrating proprioceptive and visuo-motor information. Although the neural correlates of such information processing are known, the details of how sensory-motor integration occurs are still largely unknown.ObjectiveThe study aims to characterize movements with different sensory goals, by contrasting the neural activity involved in processing proprioceptive and visuo-motor information. To accomplish this, we have developed a new methodology that utilizes the irregularity of the instantaneous gamma frequency parameter for characterization.ApproachIn this study, 8 essential tremor patients undergoing an awake deep brain stimulation (DBS) implantation surgery repetitively touched the clinician’s finger (forward visually-guided/FV movement) and then one’s own chin (backward proprioceptively-guided/BP movement). Neural electrocorticographic (ECoG) recordings from the motor (M1), somatosensory (S1), and posterior parietal cortex (PPC) were obtained and band-pass filtered in the gamma range (30-80Hz). The irregularity of the inter-event intervals (IEI; inverse of instantaneous gamma frequency) were examined as: 1) correlation between the amplitude and its proceeding IEI, and 2) auto-information of the IEI time series. We further explored the network connectivity after segmenting the FV and BP movements by periods of accelerating and decelerating forces, and applying the IEI parameter to transfer entropy methods.ResultsConceptualizing that the irregularity in IEI reflects active new information processing, we found the highest irregularity in M1 during BP movement, highest in PPC during FV movement, and the lowest during rest at all sites. Also, connectivity was the strongest from S1 to M1 and from S1 to PPC during FV movement with accelerating force and weakest during rest.SignificanceWe introduce a novel methodology that utilize the instantaneous gamma frequency (i.e., IEI) parameter in characterizing goal-oriented movements with different sensory goals, and demonstrate its use to inform the directional connectivity within the motor cortical network. This method successfully characterizes different movement types, while providing interpretations to the sensory-motor integration processes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3