Vhl deletion inDmp1-expressing cells alters MEP metabolism and promotes stress erythropoiesis

Author:

Emery Janna M.,Chicana Betsabel,Taglinao Hanna,Ponce Citlaly,Donham Cristine,Padmore Hawa,Sebastian Aimy,Trasti Scott L.,Manilay Jennifer O.

Abstract

ABSTRACTIn recent years, general hypoxia-inducible factor (HIF)-prolyl hydroxylase (PHD) enzyme inhibitors have been developed for the treatment of anemia due to renal disease and osteoporosis. However, it remains a challenge to target the HIF signaling pathway without dysregulating the skeletal and hematopoietic system. Here, we examined the effects ofVhldeletion in bone by performing longitudinal analyses ofVhlcKO mice at 3, 6, 10, and 24 weeks of age, where at 10 and 24 weeks of age, high bone mass and splenomegaly are present. Using flow cytometry, we observed increased frequency (%) of CD71loTER119hiFSCloorthochromatophilic erythroblasts and reticulocytes in 10- and 24-week-oldVhlcKO bone marrow (BM), which correlated with elevated erythropoietin levels in the BM and increased number of red blood cells in circulation. The absolute numbers of myeloerythroid progenitors (MEPs) in the BM were significantly reduced at 24 weeks. Bulk RNA-Seq of the MEPs showed upregulation ofEpas1(Hif1a)andEfnb2(Hif2a)inVhlcKO MEPs, consistent with a response to hypoxia, and genes involved in erythrocyte development, actin filament organization, and response to glucose. Additionally, histological analysis ofVhlcKO spleens revealed red pulp hyperplasia and the presence of megakaryocytes, both of which are features of extramedullary hematopoiesis (EMH). EMH in the spleen was correlated with the presence of mature stress erythroid progenitors, suggesting that stress erythropoiesis is occurring to compensate for the BM microenvironmental irregularities. Our studies implicate that HIF-driven alterations in skeletal homeostasis can accelerate erythropoiesis.Key Points• Dysregulation of HIF signaling in Dmp1+ bone cells induces stress erythropoiesis.• Skeletal homeostasis modulates erythropoiesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3