Granular retrosplenial cortex layer 2/3 generates high-frequency oscillations coupled with hippocampal theta and gamma in online states or sharp-wave ripples in offline states

Author:

Arndt Kaiser C.ORCID,Gilbert Earl T.,Klaver Lianne M. F.,Kim Jongwoon,Buhler Chelsea M.,Basso Julia C.,McKenzie Sam,English Daniel Fine

Abstract

AbstractNeuronal oscillations support information transfer by temporally aligning the activity of anatomically distributed ‘writer’ and ‘reader’ cell assemblies. High-frequency oscillations (HFOs) such as hippocampal CA1 sharp-wave ripples (SWRs; 100-250 Hz) are sufficiently fast to initiate synaptic plasticity between assemblies and are required for memory consolidation. HFOs are observed in parietal and midline cortices including granular retrosplenial cortex (gRSC). In ‘offline’ brain states (e.g. quiet wakefulness) gRSC HFOs co-occur with CA1 SWRs, while in ‘online’ states (e.g. ambulation) HFOs persist with the emergence of theta oscillations. The mechanisms of gRSC HFO oscillations, specifically whether the gRSC can intrinsically generate HFOs, and which layers support HFOs across states, remain unclear. We addressed these issues in behaving mice using optogenetic excitation in individual layers of the gRSC and high density silicon-probe recordings across gRSC layers and hippocampus CA1. Optogenetically induced HFOs (iHFOs) could be elicited by depolarizing excitatory neurons with 100 ms half-sine wave pulses in layer 2/3 (L2/3) or layer 5 (L5) though L5 iHFOs were of lower power than in L2/3. Critically, spontaneous HFOs were only observed in L2/3 and never in L5. Intra-laminar monosynaptic connectivity between excitatory and inhibitory neurons was similar across layers, suggesting other factors restrict HFOs to L2/3. To compare HFOs in online versus offline states we analyzed, separately, HFOs that did or did not co-occur with CA1 SWRs. Using current-source density analysis we found uniform synaptic inputs to L2/3 during all gRSC HFOs, suggesting layer-specific inputs may dictate the localization of HFOs to L2/3. HFOs occurring without SWRs were aligned with the descending phase of both gRSC and CA1 theta oscillations and were coherent with CA1 high frequency gamma oscillations (50-80 Hz). These results demonstrate that gRSC can internally generate HFOs without rhythmic inputs and that HFOs occur exclusively in L2/3, coupled to distinct hippocampal oscillations in online versus offline states.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3