Author:
Yadav Manish K.,Sarma Parishmita,Ganguly Manisankar,Mishra Sudha,Maharana Jagannath,Zaidi Nashrah,Dalal Annu,Singh Vinay,Saha Sayantan,Mahajan Gargi,Sharma Saloni,Chami Mohamed,Banerjee Ramanuj,Shukla Arun K.
Abstract
AbstractThe Hydroxycarboxylic acid receptor 2 (HCA2), also known as the niacin receptor or GPR109A, is a prototypical G protein-coupled receptor that plays a central role in the inhibition of lipolytic and atherogenic activities in our body. Interestingly, GPR109A activation also results in vasodilation that is linked to the side-effect of flushing associated with dyslipidemia drugs such as niacin. This receptor continues to be a key target for developing novel pharmacophores and lead compounds as potential therapeutics in dyslipidemia with minimized flushing response, however, the lack of structural insights into agonist-binding and receptor activation has limited the efforts. Here, we present five different cryo-EM structures of the GPR109A-G-protein complexes with the receptor bound to dyslipidemia drugs, niacin or acipimox, non-flushing agonists, MK6892 or GSK256073, and recently approved psoriasis drug, monomethyl fumarate (MMF). These structures allow us to visualize the binding mechanism of agonists with a conserved molecular interaction network, and elucidate the previously lacking molecular basis of receptor activation and transducer-coupling. Importantly, cellular pharmacology experiments, guided by the structural framework determined here, elucidate pathway-selective biased signaling elicited by the non-flushing agonists. Finally, taking lead from the structural insights, we successfully engineered receptor mutants via single amino acid substitutions that either fail to elicit agonist-induced transducer-coupling or exhibits G-protein signaling bias. Taken together, our study provides previously lacking structural framework to understand the agonist-binding and activation of GPR109A, and opens up the possibilities of structure-guided novel drug discovery targeting this therapeutically important receptor.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献