Author:
Demircioglu F. Esra,Zheng Weili,McQuown Alexander J.,Maier Nolan,Watson Nicki,Cheeseman Iain M.,Denic Vladimir,Egelman Edward H.,Schwartz Thomas U.
Abstract
AbstractTorsinA is an ER-resident AAA+ ATPase, whose single residue deletion of glutamate E303 results in the genetic neuromuscular disease primary dystonia. TorsinA is a highly unusual AAA+ ATPase in that it needs an external activator. Also, it appears not to thread a peptide substrate through a narrow central channel, in contrast to its closest structural homologs. Here, we examined the oligomerization of TorsinA to get closer to a molecular understanding of the still enigmatic function of it. We observe TorsinA to form helical filaments, which we analyzed by cryo-electron microscopy using helical reconstruction. The 4.4 Å structure reveals long hollow tubes with a helical periodicity of 8.5 subunits per turn, and an inner cavity of ∼4 nm diameter. We further show that the protein is able to induce tubulation of membranes in vitro, an observation that may reflect an entirely new characteristic of AAA+ ATPases. We discuss the implications of these observations for TorsinA function.
Publisher
Cold Spring Harbor Laboratory