A Synthetic Peptide Encoded by a Random DNA Sequence Inhibits Discrete Red Light Responses

Author:

Shuipys Tautvydas,Carvalho Raquel F.,Clancy Maureen A.,Bao Zhilong,Folta Kevin M.ORCID

Abstract

AbstractWe have identified a synthetic peptide that interrupts discrete aspects of seedling development under red light. Previous reports have demonstrated that plants transformed with random DNA sequences produce synthetic peptides that affect plant biology. In this report one specific peptide is characterized that inhibits discrete aspects of red-light-mediated Arabidopsis thaliana development during photomorphogenesis. Seedlings expressing the PEP6-32 peptide presented longer hypocotyls and diminished cotyledon expansion when grown under red light. Other red-light-mediated seedling processes such as induction of Lhcb (cab) transcripts or loss of vertical growth remained unaffected. Long-term responses to red light in PEP6-32 expressing plants, such as repression of flowering time, did not show defects in red light signaling or integration. A synthesized peptide applied exogenously induced the long-hypocotyl phenotype under red light in non-transformed seedlings. The results indicate that the PEP6-32 peptide causes discrete cell expansion defects during early seedling development in red light, mimicking weak phyB alleles in some aspects of seedling photomorphogenesis. The findings demonstrate that new chemistries derived from random peptide expression can modulate specific facets of plant growth and development.One Sentence SummaryA plant line expressing random DNA sequence expresses a synthetic peptide that affects specific red-light responses in a developing seedling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3