Porcine intestinal innate lymphoid cells and lymphocyte spatial context revealed through single-cell RNA sequencing

Author:

Wiarda Jayne E.ORCID,Trachsel Julian M.ORCID,Sivasankaran Sathesh K.ORCID,Tuggle Christopher K.ORCID,Loving Crystal L.

Abstract

ABSTRACTIntestinal lymphocytes are crucial members of the mucosal immune system with impact over outcomes of intestinal health versus dysbiosis. Resolving intestinal lymphocyte complexity and function is a challenge, as the intestine provides cellular snapshots of a diverse spectrum of immune states. In pigs, intestinal lymphocytes are poorly described relative to humans or traditional model species. Enhanced understanding of porcine intestinal lymphocytes will promote food security and improve utility of pigs as a biomedical model for intestinal research. Single-cell RNA sequencing (scRNA-seq) was performed to provide transcriptomic profiles of lymphocytes in porcine ileum, with 31,983 cells annotated into 26 cell types. Deeper interrogation revealed previously undescribed cells in porcine intestine, includingSELLhiγδT cells, group 1 and group 3 innate lymphoid cells (ILCs), and four subsets of B cells. Single-cell transcriptomes in ileum were compared to those in porcine blood, and subsets of activated lymphocytes were detected in ileum but not periphery. Comparison to scRNA-seq human and murine ileum data revealed a general consensus of ileal lymphocytes across species. Lymphocyte spatial context in porcine ileum was conferred through differential tissue dissection prior to scRNA-seq. Antibody-secreting cells, B cells, follicular CD4αβT cells, and cycling T/ILCs were enriched in ileum with Peyer’s patches, while non-cyclingγδT, CD8αβT, and group 1 ILCs were enriched in ileum without Peyer’s patches. scRNA-seq findings were leveraged to develop advanced toolsets for further identification of ILCs in porcine ileum via flow cytometry andin situstaining. Porcine ileal ILCs identified via scRNA-seq did not transcriptionally mirror peripheral porcine ILCs (corresponding to natural killer cells) but instead had gene signatures indicative of tissue- and activation-specific functions, indicating potentially similar roles to intestinal ILCs identified in humans. Overall, the data serve as a highly-resolved transcriptomic atlas of the porcine intestinal immune landscape and will be useful in further understanding intestinal immune cell function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3