A unique dexamethasone-dependent gene expression profile in the lungs of COVID-19 patients

Author:

Fahnøe UlrikORCID,Ronit AndreasORCID,Berg Ronan M. G.ORCID,Jørgensen Sofie E.ORCID,Mogensen Trine H.ORCID,Underwood Alexander P.ORCID,Scheel Troels K. H.ORCID,Bukh JensORCID,Plovsing Ronni R.ORCID

Abstract

AbstractLocal immunopathogenesis of COVID-19 acute respiratory distress syndrome (CARDS) and the effects of systemic dexamethasone (DXM) treatment on pulmonary immunity in COVID-19 remain insufficiently understood. To provide further insight into insight into immune regulatory mechanisms in the lungs of CARDS (with and without DXM treatment) and critically ill non-COVID-19 patients (without DXM treatment), transcriptomic RNA-seq analysis of bronchoalveolar lavage fluid (BALF) was performed in these patients. Functional analysis was performed using gene ontology and a blood transcription module, and gene expression of select pro-inflammatory cytokines, interferon-stimulated genes (ISGs) and auto-IFN antibodies were assessed. We found 550 and 2173 differentially expressed genes in patients with non-DXM-CARDS and DXM-CARDS, respectively. DXM-CARDS was characterized by upregulation of genes related to pulmonary innate and adaptive immunity, notably B-cell and complement pathway activation, antigen presentation, phagocytosis and FC-gamma receptor signalling. Pro-inflammatory genes were not differentially expressed in CARDS vs. non-COVID-19, nor did they differ according to DXM. Most ISGs were specifically upregulated in CARDS, particularly in non-DXM-CARDS. Auto-IFN autoantibodies were detectable in BALF of some CARDS patients. In conclusion, DXM treatment was not associated with regulation of pro-inflammatory pathways in CARDS but with regulation of other specific local innate and adaptive immune responses.summaryThis study identifies differentially expressed genes in bronchoalveolar fluid of COVID-19 acute respiratory distress patients with a distinct RNA expression profile of those treated with dexamethasone. These results challenge the concept of a COVID-19 specific cytokine storm.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3