Critical-like bistable dynamics in the resting-state human brain

Author:

Wang Sheng H.ORCID,Arnulfo GabrieleORCID,Myrov VladislavORCID,Siebenhühner FelixORCID,Nobili Lino,Breakspear MichaelORCID,Palva SatuORCID,Palva J. MatiasORCID

Abstract

AbstractBrain activity exhibits scale-free avalanche dynamics and power-law long-range temporal correlations (LRTCs) across the nervous system. This has been thought to reflect “brain criticality”, i.e., brains operating near a critical phase transition between disorder and excessive order. Neuronal activity is, however, metabolically costly and may be constrained by activity-limiting mechanisms and resource depletion, which could make the phase transition discontinuous and bistable. Observations of bistability in awake human brain activity have nonetheless remained scarce and its functional significance unclear. First, using computational modelling where bistable synchronization dynamics emerged through local positive feedback, we found bistability to occur exclusively in a regime of critical-like dynamics. We then assessed bistability in vivo with resting-state magnetoencephalography and stereo-encephalography. Bistability was a robust characteristic of cortical oscillations throughout frequency bands from δ (3-7 Hz) to high-γ (100-225 Hz). As predicted by modelling, bistability and LRTCs were positively correlated. Importantly, while moderate levels of bistability were positively correlated with executive functioning, excessive bistability was associated with epileptic pathophysiology and predictive of local epileptogenicity. Critical bistability is thus a salient feature of spontaneous human brain dynamics in awake resting-state and is both functionally and clinically significant. These findings expand the framework of brain criticality and show that critical-like neuronal dynamics in vivo involves both continuous and discontinuous phase transitions in a frequency-, neuroanatomy-, and state-dependent manner.

Publisher

Cold Spring Harbor Laboratory

Reference109 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3