Phylogenetic and protein prediction analysis reveals the taxonomically diverse distribution of virulence factors in the Bacillus cereus group

Author:

Zhang MingORCID,Liu Jun,Yin ZhenzhenORCID,Zhang Li

Abstract

AbstractBacillus cereus is a food contaminant with widely varying enterotoxic potential of its virulence proteins. In this article, phylogenetic analysis of the whole-genome amino acid sequences of 41 strains, evolutionary distance calculation of the amino acid sequences of the virulence genes, and functional and structural prediction of the virulence proteins were performed to reveal the taxonomically diverse distribution of virulence factors. The genome evolution of the strains showed a clustering trend based on the coding virulence genes. The strains of B. cereus have evolved into non-toxic risk and toxic risk clusters with medium-high- and medium-low-risk clusters. The distances of evolutionary transfer relative to housekeeping genes of incomplete virulence genes were greater than those of complete virulence genes, and the distance values of HblACD were higher than those of nheABC and CytK among the complete virulence genes. Cytoplasmic localization was impossible for all the virulence proteins, and NheB, NheC, Hbl-B, and Hbl-L1 were extracellular according to predictive analysis. Nhe and Hbl proteins except CytK had similar spatial structures. The predicted structures of Nhe and Hbl mainly showed ‘head’ and ‘tail’ domains. The ‘head’ of NheA and Hbl-B, including two α-helices separated by β-tongue strands, might play a special role in Nhe trimers and Hbl trimers, respectively. The ‘cap’ of CytK, which includes two ‘latches’ with many β-sheets, formed a β-barrel structure with pores, and a ‘rim’ balanced the structure. The evolution of B. cereus strains showed a clustering tendency based on the coding virulence genes, and the complete virulence-gene operon combination had higher relative genetic stability. The beta-tongue or latch associated with β-sheet folding might play an important role in the binding of virulence structures and pore-forming toxins in B. cereus.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3