Altered retinal structure and function in Spinocerebellar ataxia type 3

Author:

Toulis Vasileios,Casaroli-Marano Ricardo,Camós-Carreras Anna,Figueras-Roca Marc,Sánchez-Dalmau Bernardo,Muñoz Esteban,Ashraf Naila S.,Ferreira Ana F.,Khan Naheed,Marfany GemmaORCID,do Carmo Costa MariaORCID

Abstract

ABSTRACTSpinocerebellar ataxia type 3 is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine (polyQ)-encoding CAG repeat in the ATXN3 gene. Because the ATXN3 protein regulates photoreceptor ciliogenesis and phagocytosis, we aimed to explore whether expanded polyQ ATXN3 impacts retinal function and integrity in SCA3 patients and transgenic mice.We evaluated the retinal structure and function in five patients with Spinocerebellar ataxia type 3 and in a transgenic mouse model of this disease (YACMJD84.2, Q84) using, respectively, optical coherence tomography (OCT) and electroretinogram (ERG). We further determined in the transgenic mice: a) the retinal expression pattern of ATXN3 and assessed the distribution of cones and rods by immunofluorescence (IF); and b) the retinal ultrastructure by transmission electron microscopy (TEM).Some patients with Spinocerebellar ataxia type 3 in our cohort revealed: i) reduced central macular thickness indirectly correlated with disease duration; ii) decreased thickness of the macula and the ganglion cell layer, and reduced macula volume inversely correlated with disease severity (SARA score); and iii) electrophysiological dysfunction of cones, rods, and inner retinal cells. Transgenic mice replicated the human OCT and ERG findings with aged homozygous Q84/Q84 mice showing a stronger phenotype accompanied by further thinning of the outer nuclear layer and photoreceptor layer and highly reduced cone and rod activities, thus supporting severe retinal dysfunction in these mice. In addition, Q84 mice showed progressive accumulation of ATXN3-positive aggregates throughout several retinal layers and depletion of cones alongside the disease course. TEM analysis of aged Q84/Q84 mouse retinas supported the IF ATXN3 aggregation findings by revealing the presence of high number of negative electron dense puncta in ganglion cells, inner plexiform and inner nuclear layers, and further showed thinning of the outer plexiform layer, thickening of the retinal pigment epithelium and elongation of apical microvilli.Our results indicate that retinal alterations detected by non-invasive eye examination using OCT and ERG could represent a biological marker of disease progression and severity in patients with Spinocerebellar ataxia type 3.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3