Author:
Sakamoto Taro,Furukawa Tomoi,Pham Hoa H.N.,Kuroda Kishio,Tabata Kazuhiro,Kashima Yukio,Okoshi Ethan N.,Morimoto Shimpei,Bychkov Andrey,Fukuoka Junya
Abstract
AbstractOwing to the high demand for molecular testing, the reporting of tumor cellularity in cancer samples has become a mandatory task for pathologists. However, the pathological estimation of tumor cellularity is often inaccurate.We developed a collaborative workflow between pathologists and artificial intelligence (AI) models to evaluate tumor cellularity in lung cancer samples and prospectively applied it to routine practice. We also developed a quantitative model that we validated and tested on retrospectively analyzed cases and ran the model prospectively in a collaborative workflow where pathologists could access the AI results and apply adjustments (Adjusted-Score). The Adjusted-Scores were validated by comparing them with the ground truth established by manual annotation of hematoxylin-eosin slides with reference to immunostains with thyroid transcription factor-1 and napsin A. For training, validation, retrospective testing, and prospective application of the model, we used 40, 10, 50, and 151 whole slide images, respectively.The sensitivity and specificity of tumor segmentation were 97% and 87%, and the accuracy of nuclei recognition was 99%. Pathologists altered the initial scores in 87% of the cases after referring to the AI results and found that the scores became more precise after collaborating with AI. For validation of Adjusted-Score, we found the Adjusted-Score was significantly closer to the ground truth than non-AI-aided estimates (p<0.05). Thus, an AI-based model was successfully implemented into the routine practice of pathological investigations. The proposed model for tumor cell counting efficiently supported the pathologists to improve the prediction of tumor cellularity for genetic tests.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献