Quantification of phosphonate drugs by 1H-31P HSQC shows that rats are better models of primate drug exposure than mice

Author:

Barekatain YasamanORCID,Khadka Sunada,Harris Kristen,Delacerda Jorge,Yan Victoria C.,Chen Ko-Chien,Pham Cong-Dat,Uddin Md. Nasir,Avritcher Rony,Eisenberg Eugene J.,Kalluri Raghu,Millward Steven W.,Muller Florian L.

Abstract

AbstractThe phosphonate group is a key pharmacophore in many anti-viral, anti-microbial, and anti-neoplastic drugs. Due to its high polarity and short retention time, detecting and quantifying such phosphonate-containing drugs with LC/MS-based methods is challenging and requires derivatization with hazardous reagents. Given the emerging importance of phosphonate-containing drugs, developing a practical, accessible, and safe method for their quantitation in pharmacokinetics (PK) studies is desirable. NMR-based methods are often employed in drug discovery but are seldom used for compound quantitation in PK studies. Here, we show that proton-phosphorous (1H-31P) heteronuclear single quantum correlation (HSQC) NMR allows for quantitation of the phosphonate-containing enolase inhibitor HEX in plasma and tissue at micromolar concentrations. Although mice were shown to rapidly clear HEX from circulation (over 95% in <1 hr), the plasma half-life of HEX was more than 1hr in rats and nonhuman primates. This slower clearance rate affords a significantly higher exposure of HEX in rat models compared to mouse models while maintaining a favorable safety profile. Similar results were observed for the phosphonate-containing antibiotic, fosfomycin. Our study demonstrates the applicability of the 1H-31P HSQC method to quantify phosphonate-containing drugs in complex biological samples and illustrates an important limitation of mice as preclinical model species for phosphonate-containing drugs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3