Author:
Dell’ Aglio Elisa,Giustini Cécile,Kraut Alexandra,Couté Yohann,Mazars Christian,Matringe Michel,Finazzi Giovanni,Curien Gilles
Abstract
AbstractNADP(H) is an essential cofactor ofmultiple metabolic processes in all living organisms. While NADP+ production in plants has long been known to involve a Calmodulin (CaM)/Ca2+-dependent NAD+ kinase, the nature of the enzyme catalyzing this activity has remained enigmatic, as well as its role in plant physiology. Here, we identify an Arabidopsis P-loop ATPase (Atlg04280) with a bacterial type II zeta toxin domain, that catalyzes NADP+ production upon binding of CaM/Ca2+ to a domain located in its N-terminal region. The encoded protein (NADKc-1) is associated with the mitochondria and amplifies the elicitor-induced oxidative burst in Arabidopsis leaves representing the missing link between calcium signalling and metabolism in the response to pathogen elicitor. By analysis of various plants and algae, we show that NADKc is well conserved in the plant lineage and present in basal plants. Our data allows proposing that the CaM-dependent NAD kinase activity is only found in photosynthetic species carrying NADKc-1 related proteins, which would represent the only proteins harboring CaM-dependent NAD kinase activity in plants and algae.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献