The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression.

Author:

Missero C,Di Cunto F,Kiyokawa H,Koff A,Dotto G P

Abstract

p21Cip1/WAF1 was the first cyclin-dependent kinase (CDK) inhibitor to be identified, as a mediator of p53 in DNA damage-induced growth arrest, cell senescence, and direct CDK regulation. p21 may also play an important role in differentiation-associated growth arrest, as its expression is augmented in many terminally differentiating cells. A general involvement of p21 in growth/differentiation control and tumor suppression has been questioned, as mice lacking p21 undergo a normal development, harbor no gross alterations in any of their organs, and exhibit no increase in spontaneous tumor development. However, a significant imbalance between growth and differentiation could be unmasked under conditions where normal homeostatic mechanisms are impaired. We report here that primary keratinocytes derived from p21 knockout mice, transformed with a ras oncogene, and injected subcutaneously into nude mice exhibit a very aggressive tumorigenic behavior, which is not observed with wild-type control keratinocytes nor with keratinocytes with a disruption of the closely related p27 gene. p21 knockout keratinocytes tested under well-defined in vitro conditions show a significantly increased proliferative potential, which is also observed but to a lesser extent with p27 knockout cells. More profound differences were found in the differentiation behavior of p21 versus p27 knockout keratinocytes, with p21 (but not p27) deficiency causing a drastic down-modulation of differentiation markers linked with the late stages of the keratinocyte terminal differentiation program. Thus, our results reveal a so far undetected role of p21 in tumor suppression, demonstrate that this function is specific as it cannot be attributed to the closely related p27 molecule, and point to an essential involvement of p21 in terminal differentiation control, which may account for its role in tumor suppression.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Cited by 294 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3