A safer, urea-based in situ hybridization method improves detection of gene expression in diverse animal species

Author:

Sinigaglia Chiara,Thiel Daniel,Hejnol AndreasORCID,Houliston Evelyn,Leclère Lucas

Abstract

AbstractIn situ hybridization is a widely employed technique allowing spatial visualization of gene expression in fixed specimens. It has proven to be essential to our understanding of biological processes, including developmental regulation. In situ protocols are today routine in numerous laboratories, and although details might change, they all include a hybridization step, where specific antisense RNA or DNA probes anneal to the target nucleic acids strand. This step, in general, is carried out at high temperatures and in a denaturing solution, the hybridization buffer, commonly containing 50% (v/v) formamide. An important drawback is that hot formamide poses a significant health risk and so must be handled with great care.We were prompted to test alternative hybridization solutions for in situ detection of gene expression in the medusa of the hydrozoan Clytia hemisphaerica, where traditional protocols caused extensive deterioration of the morphology and texture during hybridization, hindering observation and interpretation of results. Inspired by optimized protocols for Northern and Southern blot analysis, we substituted the 50% formamide with an equal volume of 8 M urea solution in the hybridization buffer. The new protocol yielded better morphologies and consistency of tissues, and also notably improved the resolution of the signal, allowing more precise localization of gene expression, as well as reduced staining at non-specific sites. Given the improved results using a less toxic hybridization solution, we tested the urea protocol on a number of other metazoans: two brachiopod species (Novocrania anomala and Terebratalia transversa) and the worm Priapulus caudatus, obtaining a similar reduction of aspecific probe binding. Overall, substitution of formamide by urea in in situ hybridization offers safer alternative protocols, potentially useful in research, medical and teaching contexts. We encourage other workers to test this approach on their study organisms, and hope that they will also obtain better sample preservation, more precise expression patterns and fewer problems due to aspecific staining, as we report here for Clytia medusae and Novocrania and Terebratalia developing larvae.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3