Abstract
AbstractPoor sleep quality in Autism Spectrum Disorder (ASD) individuals is linked to severe daytime behaviors. This study explores the relationship between a prior night’s sleep structure and its predictive power for next-day behavior in ASD individuals. The motion was extracted using a low-cost near-infrared camera in a privacy-preserving way. Over two years, we recorded overnight data from 14 individuals, spanning over 2,000 nights, and tracked challenging daytime behaviors, including aggression, self-injury, and disruption. We developed an ensemble machine learning algorithm to predict next-day behavior in the morning and the afternoon. Our findings indicate that sleep quality is a more reliable predictor of morning behavior than afternoon behavior the next day. The proposed model attained an accuracy of 74% and a F1 score of 0.74 in target-sensitive tasks and 67% accuracy and 0.69 F1 score in target-insensitive tasks. For 7 of the 14, better-than-chance balanced accuracy was obtained (p-value<0.05), with 3 showing significant trends (p-value<0.1). These results suggest off-body, privacy-preserving sleep monitoring as a viable method for predicting next-day adverse behavior in ASD individuals, with the potential for behavioral intervention and enhanced care in social and learning settings.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献