Cycling reduces the entropy of neuronal activity in the human adult cortex

Author:

Silva Ferré Iara Beatriz,Corso GilbertoORCID,Santos Lima Gustavo Zampier dos,Lopes Sergio RobertoORCID,Leocadio-Miguel Mario AndréORCID,França Lucas G SORCID,de Lima Prado Thiago,Araújo John

Abstract

AbstractElectroencephalogram (EEG) data is often analyzed from a Brain Complexity (BC) perspective, having successfully been applied to study the brain in both health and disease. In this study, we employed recurrence entropy to quantify BC associated with the neurophysiology of movement by comparing BC in both resting state and cycling movement. We measured EEG in 24 healthy adults, and placed the electrodes on occipital, parietal, temporal and frontal sites, on both the right and left sides. EEG measurements were performed for cycling and resting states and for eyes closed and open. We then computed recurrence entropy for the acquired EEG series. Our results show that open eyes show larger entropy compared to closed eyes; the entropy is also larger for resting state, compared to cycling state for all analyzed brain regions. The decrease in neuronal complexity measured by the recurrence entropy could explain the neural mechanisms involved in how the cycling movements suppress the freezing of gate in patients with Parkinson’s disease due to the constant sensory feedback caused by cycling that is associated with entropy reduction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3