Human spinal interneurons repair the injured spinal cord through synaptic integration

Author:

Zholudeva Lyandysha V.ORCID,Fortino TaraORCID,Agrawal AyushiORCID,Vila Olaia F.ORCID,Williams Maggie,McDevitt Todd,Lane Michael A.ORCID,Srivastava DeepakORCID

Abstract

Advances in cell therapy offer promise for some of the most devastating neural injuries, including spinal cord injury (SCI). Endogenous VSX2-expressing spinal V2a interneurons have been implicated as a key component in plasticity and therapeutically driven recovery post-SCI. While transplantation of generic V2a neurons may have therapeutic value, generation of human spinal V2a neurons with rostro-caudal specificity and assessment of their functional synaptic integration with the injured spinal cord has been elusive. Here, we efficiently differentiated optogenetically engineered cervical V2a spinal interneurons (SpINs) from human induced pluripotent stem cells and tested their capacity to form functional synapses with injured diaphragm motor networks in a clinically-relevant sub-acute model of cervical contusion injury. Neuroanatomical tracing and immunohistochemistry demonstrated transplant integration and synaptic connectivity with injured host tissue. Optogenetic activation of transplanted human V2a SpINs revealed functional synaptic connectivity to injured host circuits, culminating in improved diaphragm activity assessed by electromyography. Furthermore, optogenetic activation of host supraspinal pathways revealed functional innervation of transplanted cells by host neurons, which also led to enhanced diaphragm contraction indicative of a functional neuronal relay. Single cell analyses pre- and post-transplantation suggested thein vivoenvironment resulted in maturation of cervical SpINs that mediate the formation of neuronal relays, as well as differentiation of glial progenitors involved in repair of the damaged spinal cord. This study rigorously demonstrates feasibility of generating human cervical spinal V2a interneurons that develop functional host-transplant and transplant-host connectivity resulting in improved muscle activity post-SCI.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3