Synthetase and Hydrolase Specificity Collectively Excludes 2’-Deoxyguanosine from Bacterial Alarmone

Author:

Zhou Rich W.,Gordon Isis J.,Hei Yuanyuan,Wang Boyuan

Abstract

AbstractIn response to starvation, virtually all bacteria pyrophosphorylate the 3’-hydroxy group of GTP or GDP to produce two messenger nucleotides collectively denoted as (p)ppGpp. Also known as alarmones, (p)ppGpp reprograms bacterial physiology to arrest growth and promote survival. Intriguingly, although cellular concentration of dGTP is two orders of magnitude lower than that of GTP, alarmone synthetases are highly selective against using 2’-deoxyguanosine (2dG) nucleotides as substrates. We thus hypothesize that production of 2dG alarmone, (p)pp(dG)pp, is highly deleterious, which drives a strong negative selection to exclude 2dG nucleotides from alarmone signaling. In this work, we show that theB. subtilisSasB synthetase prefers GDP over dGDP with 65,000-fold higherkcat/Km, a specificity stricter than RNA polymerase selecting against 2’-deoxynucleotides. Using comparative chemical proteomics, we found that although most known alarmone-binding proteins inEscherichia colicannot distinguish ppGpp from pp(dG)pp, hydrolysis of pp(dG)pp by the essential hydrolase, SpoT, is 1,000-fold slower. This inability to degrade 2’-deoxy-3’-pyrophosphorylated substrate is a common feature of the alarmone hydrolase family. We further show that SpoT is a binuclear metallopyrophoshohydrolase and that hydrolysis of ppGpp and pp(dG)pp shares the same metal dependence. Our results support a model in which 2’-OH directly coordinates the Mn2+at SpoT active center to stabilize the hydrolysis-productive conformation of ppGpp. Taken together, our study reveals a vital role of 2’-OH in alarmone degradation, provides new insight on the catalytic mechanism of alarmone hydrolases, and leads to the conclusion that 2dG nucleotides must be strictly excluded from alarmone synthesis because bacteria lack the key machinery to down-regulate such products.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3