Use of Noisy Labels as Weak Learners to Identify Incompletely Ascertainable Outcomes: A Feasibility Study with Opioid-Induced Respiratory Depression

Author:

Jeffery Alvin D.ORCID,Fabbri Daniel,Reeves Ruth M.,Matheny Michael E.

Abstract

AbstractObjectiveAssigning outcome labels to large observational data sets in a timely and accurate manner, particularly when outcomes are rare or not directly ascertainable, remains a significant challenge within biomedical informatics. We examined whether noisy labels generated from subject matter experts’ heuristics using heterogenous data types within a data programming paradigm could provide outcomes labels to a large, observational data set. We chose the clinical condition of opioid-induced respiratory depression for our use case because it is rare, has no administrative codes to easily identify the condition, and typically requires at least some unstructured text to ascertain its presence.Materials and MethodsUsing de-identified electronic health records of 52,861 post-operative encounters, we applied a data programming paradigm (implemented in the Snorkel software) for the development of a machine learning classifier for opioid-induced respiratory depression. Our approach included subject matter experts creating 14 labeling functions that served as noisy labels for developing a probabilistic Generative model. We used probabilistic labels from the Generative model as outcome labels for training a Discriminative model on the source data. We evaluated performance of the Discriminative model with a hold-out test set of 599 independently-reviewed patient records.ResultsThe final Discriminative classification model achieved an accuracy of 0.977, an F1 score of 0.417, a sensitivity of 1.0, and an AUC of 0.988 in the hold-out test set with a prevalence of 0.83% (5/599).DiscussionAll of the confirmed Cases were identified by the classifier. For rare outcomes, this finding is encouraging because it reduces the number of manual reviews needed by excluding visits/patients with low probabilities.ConclusionApplication of a data programming paradigm with expert-informed labeling functions might have utility for phenotyping clinical phenomena that are not easily ascertainable from highly-structured data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3