High sensitivity single cell RNA sequencing with split pool barcoding

Author:

Tran Vuong,Papalexi Efthymia,Schroeder Sarah,Kim Grace,Sapre Ajay,Pangallo Joey,Sova Alex,Matulich Peter,Kenyon Lauren,Sayar Zeynep,Koehler Ryan,Diaz Daniel,Gadkari Archita,Howitz Kamy,Nigos Maria,Roco Charles M.,Rosenberg Alexander B.

Abstract

AbstractSingle cell RNA sequencing (scRNA-seq) has become a core tool for researchers to understand biology. As scRNA-seq has become more ubiquitous, many applications demand higher scalability and sensitivity. Split-pool combinatorial barcoding makes it possible to scale projects to hundreds of samples and millions of cells, overcoming limitations of previous droplet based technologies. However, there is still a need for increased sensitivity for both droplet and combinatorial barcoding based scRNA-seq technologies. To meet this need, here we introduce an updated combinatorial barcoding method for scRNA-seq with dramatically improved sensitivity. To assess performance, we profile a variety of sample types, including cell lines, human peripheral blood mononuclear cells (PBMCs), mouse brain nuclei, and mouse liver nuclei. When compared to the previously best performing approach, we find up to a 2.6-fold increase in unique transcripts detected per cell and up to a 1.8-fold increase in genes detected per cell. These improvements to transcript and gene detection increase the resolution of the resulting data, making it easier to distinguish cell types and states in heterogeneous samples. Split-pool combinatorial barcoding already enables scaling to millions of cells, the ability to perform scRNA-seq on previously fixed and frozen samples, and access to scRNA-seq without the need to purchase specialized lab equipment. Our hope is that by combining these previous advantages with the dramatic improvements to sensitivity presented here, we will elevate the standards and capabilities of scRNA-seq for the broader community.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3