Antibody optimization enabled by artificial intelligence predictions of binding affinity and naturalness

Author:

Bachas Sharrol,Rakocevic GoranORCID,Spencer DavidORCID,Sastry Anand V.ORCID,Haile RobelORCID,Sutton John M.ORCID,Kasun George,Stachyra AndrewORCID,Gutierrez Jahir M.ORCID,Yassine EdrissORCID,Medjo Borka,Blay Vincent,Kohnert Christa,Stanton Jennifer T.,Brown Alexander,Tijanic Nebojsa,McCloskey Cailen,Viazzo Rebecca,Consbruck Rebecca,Carter Hayley,Levine Simon,Abdulhaqq ShaheedORCID,Shaul Jacob,Ventura Abigail B.ORCID,Olson Randal S.,Yapici EnginORCID,Meier JoshuaORCID,McClain Sean,Weinstock Matthew,Hannum GregoryORCID,Schwartz Ariel,Gander MilesORCID,Spreafico RobertoORCID

Abstract

Abstract Traditional antibody optimization approaches involve screening a small subset of the available sequence space, often resulting in drug candidates with suboptimal binding affinity, developability or immunogenicity. Based on two distinct antibodies, we demonstrate that deep contextual language models trained on high-throughput affinity data can quantitatively predict binding of unseen antibody sequence variants. These variants span a K D range of three orders of magnitude over a large mutational space. Our models reveal strong epistatic effects, which highlight the need for intelligent screening approaches. In addition, we introduce the modeling of “naturalness”, a metric that scores antibody variants for similarity to natural immunoglobulins. We show that naturalness is associated with measures of drug developability and immunogenicity, and that it can be optimized alongside binding affinity using a genetic algorithm. This approach promises to accelerate and improve antibody engineering, and may increase the success rate in developing novel antibody and related drug candidates.

Publisher

Cold Spring Harbor Laboratory

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3