Decoding spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin

Author:

Li Xiaofei,Andrusivova Zaneta,Czarnewski Paulo,Langseth Christoffer Mattsson,Andersson Alma,Liu Yang,Gyllborg Daniel,Braun Emelie,Larsson Ludvig,Hu Lijuan,Alekseenko Zhanna,Lee Hower,Avenel Christophe,Kallner Helena Kopp,Åkesson Elisabet,Adameyko Igor,Nilsson Mats,Linnarsson Sten,Lundeberg Joakim,Sundström Erik

Abstract

AbstractThe human spinal cord contains diverse cell types, governed by a series of spatiotemporal events for tissue assembly and functions. However, the spatiotemporal regulation of cell fate specification in the human developing spinal cord remains largely unknown. Single-cell RNA sequencing and spatial transcriptomics techniques have advanced the understanding of human organ development considerably. By performing integrated analysis of single-cell and spatial multi-omics methods, we created a comprehensive developmental cell atlas of the first trimester human spinal cord. Our data revealed that the cell fate commitment of neural progenitor cells and their spatial positioning are spatiotemporally regulated by specific gene sets. Beyond this resource, we unexpectedly discovered unique events in human spinal cord development compared to rodents, including earlier quiescence of active neural stem cells, different regulation of stem cell differentiation, and distinct spatiotemporal genetic regulations of cell fate choices. In addition, using our atlas we identified specific gene expression in cancer stem cells in ependymomas. Thus, we demonstrate spatiotemporal genetic regulation of human spinal cord development as well as its potential to understand novel disease mechanisms and to inspire new therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3