Meiotic drive adaptive testes enlargement during early development in the stalk-eyed fly

Author:

Bradshaw Sasha LORCID,Meade LaraORCID,Tarlton-Weatherall Jessica,Pomiankowski AndrewORCID

Abstract

AbstractThe sex-ratio ‘SR’ X-linked meiotic drive system in stalk-eyed flies destroys all Y-bearing sperm. Unlike other SR systems, drive males do not suffer fertility loss. They have greatly enlarged testes, which compensate for gamete killing. We predicted that enlarged testes arise from extended development with resources re-allocated from the accessory glands, as these tend to be smaller in drive males. To test this, we tracked the growth of the testes and accessory glands of wildtype and drive males over 5–6 weeks post-eclosion before males attained sexual maturity. Neither of the original predictions are supported by this data. Instead, we found that the drive-male testes were enlarged at eclosion, reflecting a greater allocation of resources to the testes during pupation. In addition, there was no evidence that the greater allocation of resources to the testes during adult development retarded accessory gland growth. There was evidence of a general trade-off with eyespan, as males with larger relative eyespan had larger accessory glands but smaller testes. These findings support the idea that enlarged testes in drive males arise as an adaptive allocation of resources to traits that enhance male reproductive success.One sentence summaryAdaptive testes enlargement in early development ensures maintenance of fertility in stalk-eyed flies that lose half of their sperm due to meiotic drive

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. The role of selfish genetic elements in eukaryotic evolution

2. Meiotic Drive as an Evolutionary Force

3. Selfish genes and sexual selection: the impact of genomic parasites on host reproduction;J Zool,2020

4. The ecology and evolutionary dynamics of meiotic drive;Trends in Ecology and Evolution,2016

5. Population dynamics of the segregation distorter polymorphism of Drosophila melanogaster;Genetics,1978

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3