Author:
Rózsa Márton,Tóth Martin,Oláh Gáspár,Baka Judith,Lákovics Rajmund,Barzó Pál,Tamás Gábor
Abstract
AbstractNeural population activity determines the timing of synaptic inputs, which arrive to dendrites, cell bodies and axon initial segments (AISs) of cortical neurons. Action potential initiation in the AIS (AIS-APs) is driven by input integration, and the phase preference of AIS-APs during network oscillations is characteristic to cell classes. Distal regions of cortical axons do not receive synaptic inputs, yet experimental induction protocols can trigger retroaxonal action potentials (RA-APs) in axons distal from the soma. We report spontaneously occurring RAAPs in human and rodent cortical interneurons that appear uncorrelated to inputs and population activity. Network linked triggering of AIS-APs versus input independent timing of RA-APs of the same interneurons result in disparate temporal contribution of a single cell to in vivo network operation through perisomatic and distal axonal firing.One-Sentence SummaryNetwork linked triggering of AIS-APs versus input independent timing of RA-APs of the same interneurons result in disparate temporal contribution of a single cell to in vivo network operation.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献