Lysyl oxidase-dependent subendothelial matrix stiffening promotes RAGE-mediated retinal endothelial activation in diabetes

Author:

Chandrakumar SathishkumarORCID,Tierno Irene Santiago,Agarwal MaheshORCID,Matisioudis NikolaosORCID,Kern Timothy S.ORCID,Ghosh KaustabhORCID

Abstract

AbstractEndothelial cell (EC) activation is a crucial determinant of retinal vascular inflammation associated with diabetic retinopathy (DR), a major microvascular complication of diabetes. We previously showed that, similar to abnormal biochemical factors, aberrant mechanical cues in the form of lysyl oxidase (LOX)-dependent subendothelial matrix stiffening also contribute significantly to retinal EC activation in diabetes. Yet, how LOX is itself regulated and precisely how it mechanically controls retinal EC activation in diabetes is poorly understood. Here we show that high glucose-induced LOX upregulation in human retinal ECs (HRECs) is mediated by proinflammatory RAGE (receptor for advanced glycation end products/AGEs). HRECs treated with methylglyoxal (MGO), an active precursor to the AGE MG-H1, exhibited LOX upregulation that was blocked by a RAGE inhibitor, thus confirming the ability of RAGE to promote LOX expression. Crucially, as a downstream effector of RAGE, LOX was found to mediate both the proinflammatory and matrix remodeling effects of MGO/RAGE, primarily through its ability to crosslink/stiffen matrix. Finally, using decellularized HREC-derived matrices and a mouse model of diabetes, we demonstrate that LOX-dependent matrix stiffening feeds back to enhance RAGE, thereby achieving its autoregulation and proinflammatory effects. These fresh insights into the regulation and proinflammatory role of LOX-dependent mechanical cues may help identify new therapeutic targets to block AGE/RAGE signaling in DR.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3